3.15.84 \(\int \frac {(c+d x)^{5/2}}{\sqrt {a+b x}} \, dx\) [1484]

Optimal. Leaf size=148 \[ \frac {5 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 b^3}+\frac {5 (b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 b^{7/2} \sqrt {d}} \]

[Out]

5/8*(-a*d+b*c)^3*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))/b^(7/2)/d^(1/2)+5/12*(-a*d+b*c)*(d*x+c)^
(3/2)*(b*x+a)^(1/2)/b^2+1/3*(d*x+c)^(5/2)*(b*x+a)^(1/2)/b+5/8*(-a*d+b*c)^2*(b*x+a)^(1/2)*(d*x+c)^(1/2)/b^3

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {52, 65, 223, 212} \begin {gather*} \frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 b^{7/2} \sqrt {d}}+\frac {5 \sqrt {a+b x} \sqrt {c+d x} (b c-a d)^2}{8 b^3}+\frac {5 \sqrt {a+b x} (c+d x)^{3/2} (b c-a d)}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*x)^(5/2)/Sqrt[a + b*x],x]

[Out]

(5*(b*c - a*d)^2*Sqrt[a + b*x]*Sqrt[c + d*x])/(8*b^3) + (5*(b*c - a*d)*Sqrt[a + b*x]*(c + d*x)^(3/2))/(12*b^2)
 + (Sqrt[a + b*x]*(c + d*x)^(5/2))/(3*b) + (5*(b*c - a*d)^3*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c +
d*x])])/(8*b^(7/2)*Sqrt[d])

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps

\begin {align*} \int \frac {(c+d x)^{5/2}}{\sqrt {a+b x}} \, dx &=\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {(5 (b c-a d)) \int \frac {(c+d x)^{3/2}}{\sqrt {a+b x}} \, dx}{6 b}\\ &=\frac {5 (b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {\left (5 (b c-a d)^2\right ) \int \frac {\sqrt {c+d x}}{\sqrt {a+b x}} \, dx}{8 b^2}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 b^3}+\frac {5 (b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {\left (5 (b c-a d)^3\right ) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{16 b^3}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 b^3}+\frac {5 (b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {\left (5 (b c-a d)^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{8 b^4}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 b^3}+\frac {5 (b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {\left (5 (b c-a d)^3\right ) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{8 b^4}\\ &=\frac {5 (b c-a d)^2 \sqrt {a+b x} \sqrt {c+d x}}{8 b^3}+\frac {5 (b c-a d) \sqrt {a+b x} (c+d x)^{3/2}}{12 b^2}+\frac {\sqrt {a+b x} (c+d x)^{5/2}}{3 b}+\frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 b^{7/2} \sqrt {d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.24, size = 124, normalized size = 0.84 \begin {gather*} \frac {\sqrt {a+b x} \sqrt {c+d x} \left (15 a^2 d^2-10 a b d (4 c+d x)+b^2 \left (33 c^2+26 c d x+8 d^2 x^2\right )\right )}{24 b^3}+\frac {5 (b c-a d)^3 \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{8 b^{7/2} \sqrt {d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)^(5/2)/Sqrt[a + b*x],x]

[Out]

(Sqrt[a + b*x]*Sqrt[c + d*x]*(15*a^2*d^2 - 10*a*b*d*(4*c + d*x) + b^2*(33*c^2 + 26*c*d*x + 8*d^2*x^2)))/(24*b^
3) + (5*(b*c - a*d)^3*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(8*b^(7/2)*Sqrt[d])

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 173, normalized size = 1.17

method result size
default \(\frac {\left (d x +c \right )^{\frac {5}{2}} \sqrt {b x +a}}{3 b}-\frac {5 \left (a d -b c \right ) \left (\frac {\left (d x +c \right )^{\frac {3}{2}} \sqrt {b x +a}}{2 b}-\frac {3 \left (a d -b c \right ) \left (\frac {\sqrt {b x +a}\, \sqrt {d x +c}}{b}-\frac {\left (a d -b c \right ) \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \ln \left (\frac {\frac {1}{2} a d +\frac {1}{2} b c +b d x}{\sqrt {b d}}+\sqrt {b d \,x^{2}+\left (a d +b c \right ) x +a c}\right )}{2 b \sqrt {d x +c}\, \sqrt {b x +a}\, \sqrt {b d}}\right )}{4 b}\right )}{6 b}\) \(173\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)^(5/2)/(b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*(d*x+c)^(5/2)*(b*x+a)^(1/2)/b-5/6*(a*d-b*c)/b*(1/2*(d*x+c)^(3/2)*(b*x+a)^(1/2)/b-3/4*(a*d-b*c)/b*((b*x+a)^
(1/2)*(d*x+c)^(1/2)/b-1/2*(a*d-b*c)/b*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+
b*d*x)/(b*d)^(1/2)+(b*d*x^2+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [A]
time = 0.94, size = 412, normalized size = 2.78 \begin {gather*} \left [-\frac {15 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) - 4 \, {\left (8 \, b^{3} d^{3} x^{2} + 33 \, b^{3} c^{2} d - 40 \, a b^{2} c d^{2} + 15 \, a^{2} b d^{3} + 2 \, {\left (13 \, b^{3} c d^{2} - 5 \, a b^{2} d^{3}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{96 \, b^{4} d}, -\frac {15 \, {\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - 2 \, {\left (8 \, b^{3} d^{3} x^{2} + 33 \, b^{3} c^{2} d - 40 \, a b^{2} c d^{2} + 15 \, a^{2} b d^{3} + 2 \, {\left (13 \, b^{3} c d^{2} - 5 \, a b^{2} d^{3}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{48 \, b^{4} d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/96*(15*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c
*d + a^2*d^2 - 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) - 4*(8
*b^3*d^3*x^2 + 33*b^3*c^2*d - 40*a*b^2*c*d^2 + 15*a^2*b*d^3 + 2*(13*b^3*c*d^2 - 5*a*b^2*d^3)*x)*sqrt(b*x + a)*
sqrt(d*x + c))/(b^4*d), -1/48*(15*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*sqrt(-b*d)*arctan(1/2*(2
*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) -
2*(8*b^3*d^3*x^2 + 33*b^3*c^2*d - 40*a*b^2*c*d^2 + 15*a^2*b*d^3 + 2*(13*b^3*c*d^2 - 5*a*b^2*d^3)*x)*sqrt(b*x +
 a)*sqrt(d*x + c))/(b^4*d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)**(5/2)/(b*x+a)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 446 vs. \(2 (116) = 232\).
time = 1.38, size = 446, normalized size = 3.01 \begin {gather*} -\frac {\frac {24 \, {\left (\frac {{\left (b^{2} c - a b d\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d}} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a}\right )} c^{2} {\left | b \right |}}{b^{2}} - \frac {{\left (\sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a} {\left (2 \, {\left (b x + a\right )} {\left (\frac {4 \, {\left (b x + a\right )}}{b^{2}} + \frac {b^{6} c d^{3} - 13 \, a b^{5} d^{4}}{b^{7} d^{4}}\right )} - \frac {3 \, {\left (b^{7} c^{2} d^{2} + 2 \, a b^{6} c d^{3} - 11 \, a^{2} b^{5} d^{4}\right )}}{b^{7} d^{4}}\right )} - \frac {3 \, {\left (b^{3} c^{3} + a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - 5 \, a^{3} d^{3}\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} b d^{2}}\right )} d^{2} {\left | b \right |}}{b^{2}} - \frac {12 \, {\left (\sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} {\left (2 \, b x + 2 \, a + \frac {b c d - 5 \, a d^{2}}{d^{2}}\right )} \sqrt {b x + a} + \frac {{\left (b^{3} c^{2} + 2 \, a b^{2} c d - 3 \, a^{2} b d^{2}\right )} \log \left ({\left | -\sqrt {b d} \sqrt {b x + a} + \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt {b d} d}\right )} c d {\left | b \right |}}{b^{3}}}{24 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)^(5/2)/(b*x+a)^(1/2),x, algorithm="giac")

[Out]

-1/24*(24*((b^2*c - a*b*d)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/sqrt(b*d)
- sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a))*c^2*abs(b)/b^2 - (sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqr
t(b*x + a)*(2*(b*x + a)*(4*(b*x + a)/b^2 + (b^6*c*d^3 - 13*a*b^5*d^4)/(b^7*d^4)) - 3*(b^7*c^2*d^2 + 2*a*b^6*c*
d^3 - 11*a^2*b^5*d^4)/(b^7*d^4)) - 3*(b^3*c^3 + a*b^2*c^2*d + 3*a^2*b*c*d^2 - 5*a^3*d^3)*log(abs(-sqrt(b*d)*sq
rt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*b*d^2))*d^2*abs(b)/b^2 - 12*(sqrt(b^2*c + (b*x
+ a)*b*d - a*b*d)*(2*b*x + 2*a + (b*c*d - 5*a*d^2)/d^2)*sqrt(b*x + a) + (b^3*c^2 + 2*a*b^2*c*d - 3*a^2*b*d^2)*
log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt(b*d)*d))*c*d*abs(b)/b^3)/b

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (c+d\,x\right )}^{5/2}}{\sqrt {a+b\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d*x)^(5/2)/(a + b*x)^(1/2),x)

[Out]

int((c + d*x)^(5/2)/(a + b*x)^(1/2), x)

________________________________________________________________________________________